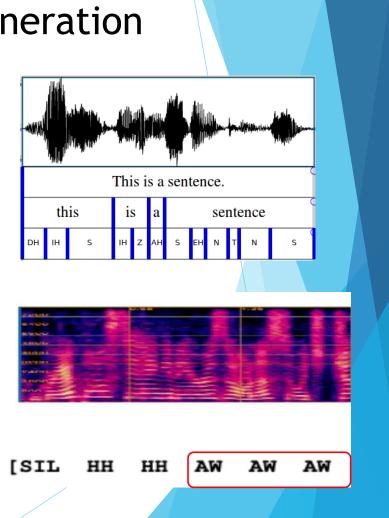
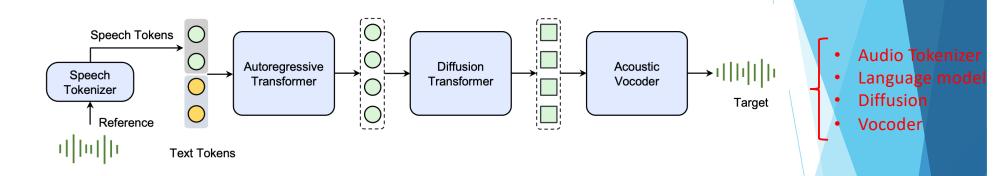
Towards human like voice interaction

Zhuo Chen Bytedance

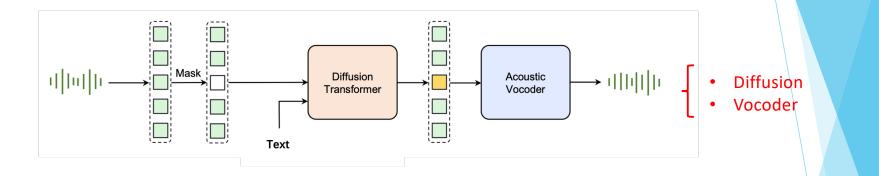
Content


- > Two general architectures in recent audio generation and their limitations
- Representation and alignment improvement
- An end to end perspective


Two perspectives for speech generation

Text sequence

- Monotonic mapping
- Semantic information
- Friendly for auto-regressive generation
- ► AudioLM, Valle, Cosyvoice1,2 etc.
- Image patch
 - One to many mapping
 - "Low rank" structure
 - Naturally benefit from image generation
 - ▶ Voice box, F5-TTS etc.



Seed-TTS

- On language modeling side:
 - > Discrete sematic token ensures the general architecture of the speech
 - Causal diffusion decoder further polish details
 - Friendly to streaming processing

Seed-TTS-DIT

- From image generation side:
 - > One latent diffusion transformer, much simpler pipeline
 - No pre-estimated alignment
 - Excels in editing tasks
 - Block online or offline processing

WER (\downarrow)

2.143

2.165

EN

EN

SIM (†)

0.730

0.702

0.762

0.790

0.750

0.733

0.796

0.809

System Lang. Both systems can achieve high⁻ Human quality speech generation Vocoder resynthesized Seed-TTS_{ICL} • Surpass the recording and

- vocoder reconstruction in ASR/ASV metrics
 - Large diversity and good scaling property

Evaluation

- 2.249 EN EN 1.733 Seed-TTS_{DiT} Human ZH 1.254 ZH 1.342 Vocoder resynthesized ZH 1.115 Seed-TTS_{ICL} Seed-TTS_{DiT} ZH 1.178
- Interestingly, the two architecture have very similar performance in all subjective and objective tests

More audio demo can be found in https://bytedancespeech.github.io/seedtts_tech_report/

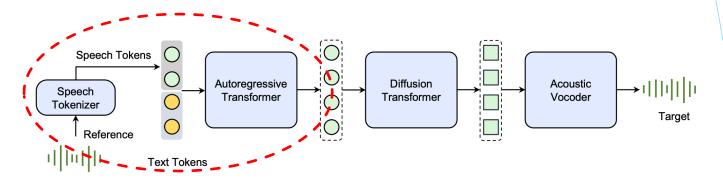
Applications in Audio and Music generation

Seed Music

- Condition on text description, singing prompt, or midi
- Full song generation and editing
- Reinforcement learning to improve the generation quality
- Demo can be found in https://team.doubao.com/en/special/seedmusic

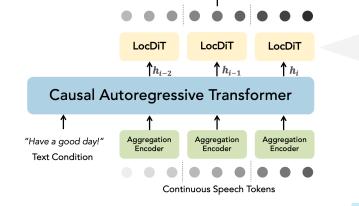
Seed Foley

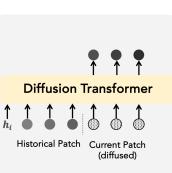
- Audio effect generation conditioned on text or video input
- Multi-source generation and event synchronization


Demo for Seed Foley

A bit recap

- Speech and Audio signal shares properties from both text and image. From either perspective, we can build high quality generation models with different advantages, and apply them to different applications.
- It seems that these systems can compose a rather complete story, what's next?
 - Do we just need to work on data optimization?
 - Are there systematic limitations in these systems
- Unfortunately, there are always more problems than solutions
 - Two obvious limitations
 - ▶ Representation
 - Alignment
 - And more...


Limitation in representation



- Representation limitation
 - Discrete speech tokens suffer from the information loss
 - High frequency rate results in long sequence
 - Difficulties in extend to video/image signal
 - Hallucination from the diffusion decoder
 - Meanwhile, NAR architecture is hard to joint model with LLM and streaming processing
 - Major LLMs are auto-regressive based
- Can we bring the benefit from both sides?

DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

- A patch based auto-repressive model
 - Directly build on the continuous VAE latent
 - Auto-regressive backbone for streaming language modeling
 - Local diffusion head for diverse generation
 - Continuous representation ensures high quality, low frame rate wave generation

DiTAR results

System	Seed-EN		Seed-ZH	
	WER(%) ↓	SIM↑	WER(%)↓	SIM ↑
Human	2.06	0.73	1.254	0.750
Seed-TTS _{DiT}	<u>1.733</u>	0.790	<u>1.178</u>	0.809
CosyVoice	4.29	0.609	3.63	0.723
CosyVoice 2	2.57	0.652	1.45	0.748
CosyVoice 2-S	2.38	0.654	1.45	0.753
FireRedTTS	3.82	0.46	1.51	0.63
MaskGCT	2.623	0.717	2.273	<u>0.774</u>
E2TTS	2.19	0.71	1.97	0.73
F5TTS	1.83	0.67	1.56	0.76
DiTAR	1.685	0.735	1.023	0.753

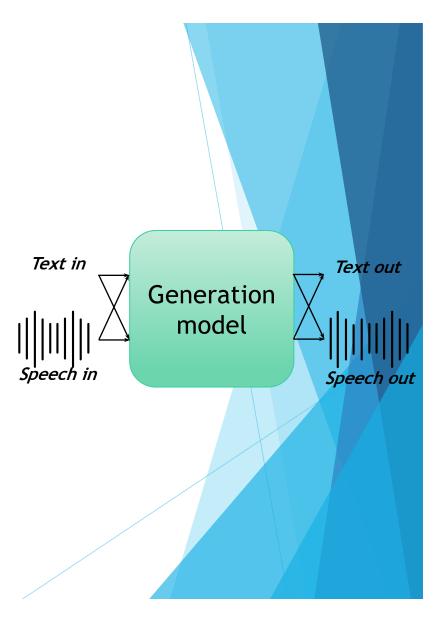
Limitation in alignment

Conflicts between multi-source condition generation

- In zero shot setting, can we generate an angry voice from a happy prompt?
- Mismatch in prompt continuation.

- Difficulty in generalizable sematic alignment
 - Emergence in voice command control
 - Context aware tone switching

Improving condition alignment through RL


- Training/Testing mismatch results in unstable control
- With simple RL algorithm, we can largely boost the control stability
 - ▶ Various RL algorithms works, e.g. reinforce, DPO, PPO etc.

System	Angry	Нарру	Sad	Surprise
Seed-TTS _{ICL}	0.46	0.44	0.53	0.13
Seed-TTS _{RL-SER}	0.91	0.8	0.78	0.82

Table 9. Comparison of the emotion control accuracy (\uparrow) between Seed-TTS_{RL-SER} and Seed-TTS_{ICL} in the zero-shot scenario using the emotion set from subsection 3.2.

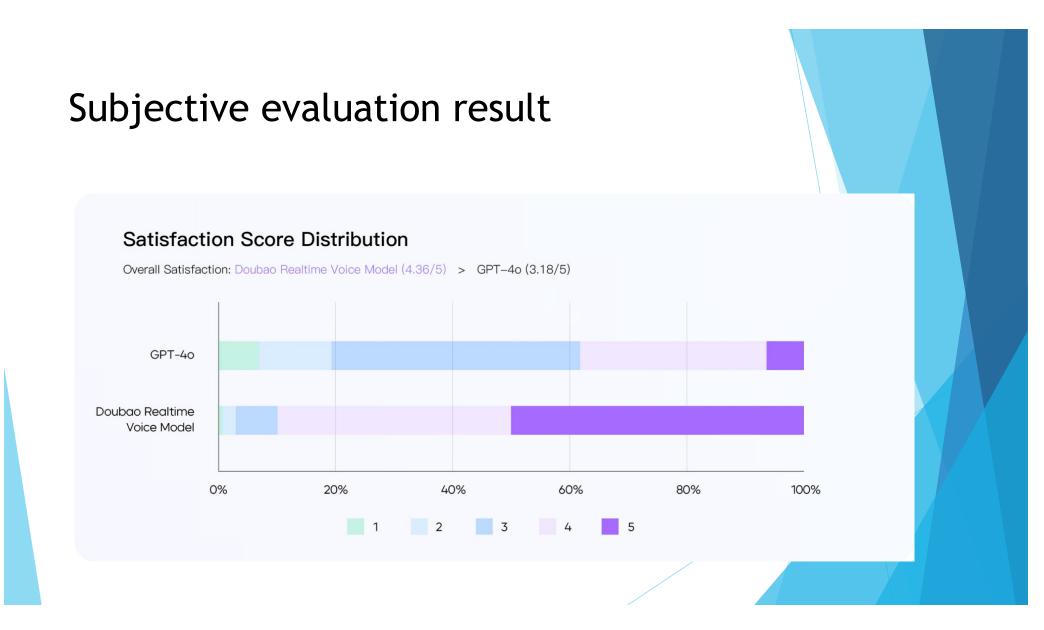
A more end to end perspective

- Even with an improved controllability, the model still struggles in
 - Generalization to unseen commands
 - Unseen natural sound behavior, e.g. cough, yawn
 - Context aware tone switching
- GPT-40 first demonstrate the potential of joint model
 - We explore this direction and push the performance on E2E audio-LLM

Better alignment through joint optimization

- Generalization to unseen command
 - > An emerging funny drunken voice
 - Multi-turn adjustment
 - Character playing
- Context aware tone switching
 - Storytelling

Singing


Demo for emotion control

More demo can be found in https://team.doubao.com/en/special/realtime_voice

Subjective evaluation

- We recruited 27 external participants, providing 810 conversations across 270 topics
- Participants were from 10 cities in China, including 9 males and 18 females, all aged between 21 and 33
- Among the participants, 11.11% had never used Doubao, 70.37% were light users (1-2 days per week), 14.81% were more frequent users (3-5 days per week), and 3.7% used Doubao every day.

A bit recap

- The LM or DIT model both produce realistic audio generation, but suffers from limitations in representation and alignment
- **b** By using the DiTAR architecture, we benefit from both ends
- Reinforcement learning helps the condition controllability. End to end model further improve the model alignment
- What's next?

Towards human like voice agent

- Converse like real human in everyway in all major languages
- Usefulness, responsiveness and empathy
- Long term memory, reasoning and personalization
- Further multi-agent, multi-modality fusion
- And more...

